Statistical Detection of Association Hotspots in Highly Dimensional Genomic Data

Jianxin Shi Jianxin.Shi@nih.gov Biostatistics Branch Division of Cancer Epidemiology and Genetics National Cancer Institute

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institues of Health

cis QTLs v.s. trans QTLs

Master regulators (MR)	
rans-regulate many targets	

	cis	trans
locations	SNP and target gene are physically close	SNP and target gene are far away or on different chromosomes
Effect sizes	big	small
Multiple testing	Search locally, small multiple testing burden	Search genome-wide, huge multiple testing burden
Power	good	Poor

- SNP -> gene expression
- SNP -> DNA methylation
- CpG -> gene expression
- SCNA -> gene expression in tumors

LETTERS

nature genetics

Identification of an imprinted master *trans* regulator at the *KLF14* locus related to multiple metabolic phenotypes

Kerrin S Small^{1,2,10}, Åsa K Hedman^{3,10}, Elin Grundberg^{1,2,10}, Alexandra C Nica⁴, Gudmar Thorleifsson⁵, Augustine Kong⁵, Unnur Thorsteindottir^{5,6}, So-Youn Shin², Hannah B Richards⁷, the GIANT Consortium⁸, the MAGIC Investigators⁸, the DIAGRAM Consortium⁸, Nicole Soranzo^{1,2}, Kourosh R Ahmadi¹, Cecilia M Lindgren³, Kari Stefansson^{5,6,10}, Emmanouil T Dermitzakis^{4,10}, Panos Deloukas^{2,10}, Timothy D Spector^{1,10} & Mark I McCarthy^{3,7,9,10} for the MuTHER Consortium⁸

Theory

Cell

Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci

Qiyuan Li,^{1,2,4} Ji-Heui Seo,^{1,2} Barbara Stranger,^{6,11} Aaron McKenna,^{5,7} Itsik Pe'er,⁸ Thomas LaFramboise,⁹ Myles Brown,¹ Svitlana Tyekucheva,^{3,10} and Matthew L. Freedman^{1,2,4,*}

Provide evidences that three breast cancer SNPs cis-act MYC, ESR and KLF4, which further affect downstream genes.

Methods for Detecting Master Regulators

• First method

 Choosing a *P*-value threshold (stringent, E-10) to detect significant *trans*-QTLs. For each SNP, count the number of traits significantly associated with the SNP.

Second Method

- For each SNP, let P_k be the *P*-value between the SNP and trait *k*. Choose a liberal threshold p_0 (e.g. 0.001) and count $M=\#\{P_k < p_0\}$. If *M* is large, the SNP is a master regulator.
- Assuming traits are independent, calculate significance using Poisson approximation.
- Many eQTL studies reported master regulators.

Perspective

Genetical Genomics: Spotlight on QTL Hotspots

Rainer Breitling¹, Yang Li¹, Bruno M. Tesson¹, Jingyuan Fu^{1,2}, Chunlei Wu³, Tim Wiltshire⁴, Alice Gerrits⁵, Leonid V. Bystrykh⁵, Gerald de Haan⁵, Andrew I. Su³*, Ritsert C. Jansen^{1,2}*

• One example study

 Wu et al. (Plos Genetics, 2008) detected ~1600 master regulators in mouse adipose tissue eQTL study.

• A formal permutation test

- Permute genotype; keep correlation in traits unchanged.
- Test statistic is $M = \#\{P_k < p_0\}$.
- Based on permutations, the best SNP has a *P*-value 0.23!
- Correlation in traits and statistical inference

meQTLs Analysis in EAGLE Normal Lung Tissue

EAGLE: Environment And Genetics in Lung cancer Etiology, DCEG/NCI Dr. Landi and Dr. Caporaso at DCEG/NCI 210 tumor adjacent normal fresh frozen tissues in EAGLE 500K common SNPs and 340K CpG probes after QC.

Illumina HumanMethylation450 BeadChip

Distribution of CpG probes in platform

Shi et al., Nature Communications, 2014

GenRED: Genetics of Recurrent Early-Onset Depression

RNA-Seq in 922 blood samples and GWAS SNPs

Dr. Douglas Levinson, Stanford University

~700K common SNPs and 15,000 genes after QC.

Identified ~11K cis eQTLs and ~110 trans eQTLs.

One master regulator was detected.

A Statistical Framework for Detecting Master Regulators

Notations

- Consider one SNP and K genes not in its cis-region.
- Let Z_k be the score statistic for testing the association between the SNP and gene k. Let $u_k = E(Z_k)$. Under null, $Z_k \sim N(0,1)$.

• Statistical question

- Given $\{Z_1, ..., Z_k\}$, we test null hypothesis $H_0: u_k=0$ for k=1,...,K.
- If H_0 is rejected, a master regulator is detected. We use FDR to identify associated genes for the master regulator.

Testing *H*⁰ **for Independent Traits**

Siegmund and Zhang's test

$$T = \sum_{k=1}^{K} \log(1 - w + w \exp(z_k^2 / 2))$$

w defines the proportion of genes associated with the SNP.

If a small proportion of genes are associated, we choose a small w.

Or choose a series of *w* and correct for multiple testing.

Long Range Correlations in Traits Damages MR Detection

Null distribution for T based on permutations

Correlations in traits make the variance of test T extremely large. The power is typically close to zero.

Permutations can protect against false positives. But we need power!

Long Range Correlations in EAGLE and GenRED

	Empirical distribution of correlations	Expected distribution of correlations if independent	
EAGLE methylation	N(0.10, 0.149 ²)	N(0.0, 0.064 ²)	
GenRED RNA-seq	N(0.02, 0.065 ²)	N(0.0, 0.032 ²)	

We have corrected for sex, age, plates and PCA vectors capturing some hidden confounding factors.

Improve Power by Reducing Var(T)

Permutations

- 1M permutations, keeping trait correlation structure.
- For permutation *t*, calculate (z_1^t, \dots, z_K^t) , u_t , σ_t and T_t statistic.

• This observation suggests that we can reduce Var(T) by adjusting for the features of the empirical distribution of (Z_1, \dots, Z_K) .

Detecting Master Regulatory SNPs by Correcting for Empirical Null Distribution

- Consider one SNP and *K* traits.
- Using original data to calculate (Z_1, \dots, Z_K) , μ , σ and T.
- Run 1M permutations keeping correlation structure. For permutation *t*, calculate (z_1^t, \dots, z_K^t) , u_t , σ_t and T_t statistic.
- Run linear regression (or smoothing)

$$\log(T_t) = \alpha + \beta_1 \mu_t + \beta_2 \sigma_t + \varepsilon_t$$

• Define a new test as

$$\log(T_{\mu,\sigma}) = \log(T) - \hat{\alpha} - \hat{\beta}_1 \mu - \hat{\beta}_2 \sigma$$

• Significance of $T_{\mu,\sigma}$ is evaluated using permutations.

Power Simulation in Realistic Correlated Traits

- Using 340K CpG traits of 210 samples from EAGLE data.
- 10 or 20 traits associated with a SNP. Other traits are from data.
- Null distribution is based 1M permutations.

 $\mu = E(Z_k)$ is effect size; $\alpha = 0.001$.

Correcting for Skewness and Kurtosis Further Improves Statistical Power

Linear regression:

 $\log(T_t) = \alpha + \beta_1 \mu_t + \beta_2 \sigma_t + \beta_3 r_t + \beta_4 \kappa_t + \varepsilon_t$

First four moments corrected test: $\log(T_{\mu\sigma r\kappa}) = \log(T) - \hat{\alpha} - \hat{\beta}_1 \mu - \hat{\beta}_2 \sigma - \hat{\beta}_3 r - \hat{\beta}_4 \kappa$

skewness

kurtosis

EAGLE Methylation QTL Study

- 210 normal lung samples, 340K CpG probes.
- rs1214759 (6p21.1) was detected as a candidate
 - $P=3.8\times10^{-6}$, did no reach genome wide significance 5×10^{-8} .
 - 80 CpG probes associated with rs1214759 at $P < 10^{-5}$
 - No (SNP,CpG) pair achieved significance 2×10⁻¹⁰ to be detected.
- Can we replicate?

How many CpG probes are associated with rs1214759?

	CpGs expected under Null	Gs expected CpGs in EAGLE	
<i>P</i> <10 ⁻⁵	34K*10 ⁻⁵ =3.4	80	

EAGLE discovery sample

TCGA lung validation 65 samples

EAGLE Methylation QTL Study

- 210 normal lung samples, 340K CpG probes.
- rs1214759 (6p21.1) was detected as a candidate
 - $P=3.8\times10^{-6}$, did no reach genome wide significance 5×10^{-8} .
 - 80 CpG probes associated with rs1214759 at $P < 10^{-5}$
 - No SNP/CpG pair achieved significance 2×10⁻¹⁰ to be detected.
- Can we replicate?

How many CpG probes are associated with rs1214759?

	CpGs expected under Null	CpGs in EAGLE	CpGs replicated TCGA lung (n=65)	
<i>P</i> <10 ⁻⁵	34K*10 ⁻⁵ =3.4	80	53	

Replication criterion: same direction and P<0.05.

GenRED RNA-Seq of 922 Blood Samples Internal Validation Results

615 samples as discovery; 13 master regulators at 5E-8; 22 at FDR=5%. 307 samples as validation

SNID	<i>P</i> -discovery	<i>P</i> _{-validation}	# detected	Same direction in	<i>P</i> <0.05 in
JINF	P-uiscovery	F-valluation	genes	validation	validation
rs1354034	1.80E-24	8.30E-22	178	167	139
rs497953	8.20E-19	2.80E-08	69	67	53
rs10251980	1.60E-11	4.60E-07	123	116	73
rs13289095	2.10E-11	8.20E-03	26	26	19
rs13218225	7.80E-11	7.80E-02	56	43	12
rs6580981	1.00E-09	1.30E-01	31	27	17
rs8056400	3.10E-09	8.40E-08	8	8	7
rs8073060	6.00E-09	3.60E-05	33	32	27
rs1138358	6.90E-09	2.40E-03	20	19	15
rs12145080	8.40E-09	2.00E-07	5	5	5
rs821470	1.50E-08	2.00E-04	10	10	7
rs9399137	2.60E-08	7.50E-07	7	7	6
rs13019832	2.80E-08	9.80E-07	5	5	5
rs12938031	1.80E-07	4.00E-06	2	2	2
rs16911097	1.80E-07	2.70E-03	26	24	20
rs12419022	2.30E-07	6.50E-04	4	4	4
rs10074873	2.50E-07	4.20E-06	12	11	7
rs8090565	3.50E-07	1.00E-02	5	4	4
rs4964607	3.70E-07	2.20E-04	3	3	3
rs11229606	3.90E-07	1.30E-04	4	4	4
rs12418771	4.60E-07	5.20E-03	4	4	4
rs3130612	6.60E-07	4.30E-03	3	3	3

GenRED RNA-Seq of 922 Blood Samples

33 master regulators detected at FDR<5% or P<8.0E-7;

QQ plot for detecting master regulators in the RNA-Seq eQTL study based on GenRED, lambda=0.95

trans-Associations Mediated by PLAGL1

with transactivation and DNA binding.

trans-Associations Mediated by LCN2

LCN2 not transcription factor!

Master eSNPs and GWAS Catalog

rs4895411 not associated with any gene in 5M. Other biological mechanism.

rs1354034 trans-regulates 242 genes. *rs1354034* associated with platelet counts and mean platelet volume in GWAS.

Ongoing Work

- Identify master regulators in TCGA data
- Predictors
 - SNP, DNA methylation, somatic copy number aberrations, somatic gene mutation status
- Quantitative traits
 - Gene expression, DNA methylation in tumor samples
- ~30 cancers in TCGA
 - Sample sizes range from 100 to ~1000.

Summary

- Long range correlation in traits may damage the power of detecting master regulators.
- We developed a computationally expensive but statistically powerful approach for detecting master regulators.
- We identified replicable master regulators for gene expression and DNA methylation.
- Computation is intensive.

Acknowledgement

Dr. William Wheeler, NCI/DCEG contractor

Dr. Douglas Levinson, Stanford

Dr. Teresa Landi, NCI/DCEG

Dr. Alexis Battle, John Hopkins

Dr. Nilanjan Chatterjee, NCI/DCEG

Mr. Lei Song, NCI/DCEG contractor

